

Environmentally Friendly Coating Development at NASA Kennedy Space Center

Luz M. Calle
Wendy Li
Scott Jolley
Paul E. Hintze
Paul.E.Hintze@nasa.gov

Corrosion Technology Laboratory NASA Kennedy Space Center

Corrosion Technology Laboratory

- New technology development
- Atmospheric and accelerated corrosion testing
- Corrosion engineering services for a unique environment
- http://corrosion.ksc.nasa.gov

Corrosion Technology Laboratory

- Located in the Merritt Island National Wildlife Refuge
- Many systems still use environmentally unacceptable products

Corrosion Technology Laboratory

- Smart coatings that sense their environment and provide a response
- Self cleaning coatings
- Environmentally friendly powder coating

- The use of "smart materials" for corrosion sensing relies on a material undergoing a transformation through its interaction with the corrosive environment
- Chromate containing coatings are considered to be damage responsive

Examples of corrosion sensing coatings:

- Paint systems with color-changing compounds that respond to the pH changes that result from corrosion processes.
- Changes of coating compounds from non-fluorescent to fluorescent states.
- Release of color dyes on coating damage from incorporated dyefilled microcapsules.

The best coatings for corrosion protection provide not only barriers to the environment, but also a controlled release of a corrosion inhibitor, as demanded by coating damage and the presence of a corrosive environment. Past examples include coatings containing metallic zinc, such as the zinc-rich paint systems, and chromate.

Sample coated with acrylic + phenolphthalein (critical PH =10) following exposure to 1M NaCl for 8 days.

http://www.mse.eng.ohiostate.edu/fac_staff/faculty/frankel/frankel.html

S. R. White, Nature, 409, 794-797, 2001

- Develop a paint system that can detect and repair corrosion at a very early stage without human intervention
- The system should be easily adapted for the delivery of new corrosion inhibitor compounds
- The system must work in different paint matrices

Electrochemical Nature of Corrosion

Overall Reaction

$$2H_2O + O_2 + 2Fe \rightarrow 2Fe^{2+} + 4OH^{-}$$

Anodic Reaction

$$Fe \rightarrow Fe^{2+} + 2e^{-}$$

Cathodic

$$2H_2O + O_2 + 4e^- \rightarrow 4OH^-$$

Microcapsule containing pH indicator (inhibitor, self healing agents)

The shell of the microcapsule breaks down under basic pH conditions

Microcapsule Synthesis

Color change due to Microcapsules in solution responding to basic pH conditions

Microcapsules in paint responding to basic pH conditions

Microcapsules indicating presence of localized corrosion

- Early detection of corrosion
 - Fluorescent pH indicator Easy to detect, even in very small amounts
- Versatility of the microcapsule design
 - Successful encapsulation of water soluble and water insoluble compounds
 - Can be incorporated into different dispersion systems
- Currently working new inhibitor mixtures and paint systems

- Develop self-cleaning coatings that remove contamination without human intervention
- Coatings that chemically remove organic contaminants, leaving no residue
- Cleaning effect comes from titanium based photo-catalysts

- Catalyst absorbs light and creates a transient reactive species on surface
- Reactive species reacts with contaminant

 Protect ground support equipment, spacecraft and vehicle assembly areas from

contamination

- Incorporate self cleaning catalyst into a variety of coatings that would be used in the KSC environment
- Make sure the catalyst has no adverse effects on the coating

- Currently, have only tested catalyst and a few coatings in the laboratory using the reduction of a red dye
- Achieved over an 80% reduction for the best catalyst and 50% reduction for a coating in 48 hours
- 66% reduction in Mars chamber corresponding to 9 Martian sols

- Test the coatings self cleaning properties after exposure to the KSC environment
- Evaluate the coatings ability to clean vapor phase contaminants

High Performance Powder Coatings

- Formulation applied to metal surfaces as a 20 100 micron powder
- Object baked to achieve melt, flow and cure of coating
- Common powder coatings include urethanes, epoxies, acrylics and polyesters
- No VOCs, overspray can be recycled
- Used on automobiles, appliances and architectural applications

High Performance Powder Coatings

Why polyimide coatings?

- Provide excellent thermal stability, solvent resistance and electrical properties
 - Possible replacement for chromium containing coatings on aircraft
- Low melt polyimides were developed at KSC for wire repair
- Never been made into a powder coating
 - Unworkable using conventional methods (extrusion, solvents etc...)

High Performance Powder Coatings

- Several resins have been prepared with promising results
- Excellent results for flow, adhesion and toughness
- Issues surrounding surface wetting still need to be addressed

Acknowledgements

- NRC (National Research Council) and NASA Postdoctoral Fellowship (ORAU)
- NASA-SOMD, IPP, CDDF and CTC Funding
- University of Mississippi and North Dakota State University
- NASA

Eduardo Lopez del Castillo, Peter Marciniak, Patrick Faughnan, Nancy Zeitlin

ASRC Aerospace

Rubie Vinje, Jerry Curran, Frank Gryn, Mark Kolody, Ray Anderson

